Representing and Visualizing Vectorized Videos
through the Extreme Vertices M odel
in the n-Dimensional Space (nD-EVM)

Ricardo Pérez-Aguila

Universidad Tecnoldgica de la Mixteca
Carretera Hugjuapan-AcatlimaKm. 2.5.
Huajuapan de Ledn, Oaxaca 69000, México
ricardo.perez.aguila@gmail.com

Abstract. Several video compression methods were invented to be able to
effectively store video data on common digital media. One method of
compression we will explore in this work is oriented to vectorized video
sequences. Each frame in a color video is initially represented as a set of
orthogonal polygons whose displaying time depends on the tempora
dimension. Moreover, one spatial dimension will be assigned to the color to
apply to such polygons. Hence, a vectorized 2D color video sequence can be
expressed as a Four-Dimensional Orthogonal Pseudo-Polytope which will be
represented under the Extreme Vertices Model in the n-Dimensional Space
(nD-EVM). The nD-EVM shares the representation of n-Dimensional
Orthogonal Pseudo-Polytopes (nD-OPP’s) by considering only a subset of their
vertices: the Extreme Vertices. This work will describe how the source
sequences can be converted in a vectorized video and then compressed,
expressed, manipulated, and displayed in screen through the 4D-EVM. The
results obtained from the conversion of two video sequences motivate some
observations and properties of the proposed methodology .

Keywords: n-Dimensional Orthogona Polytopes Modeling, Geometrical and
Topological Representations, Color 2D-Videos Compression, Computational
Geometry.

1 Introduction and Problem Statement

The Extreme Vertices Model (3D-EVM) was originaly presented, and widely
described in [1], for modeling 2-manifold Orthogonal Polyhedra and later considering
both Orthogonal Polyhedra
(3D-OFP's) and Pseudo-Polyhedra (3D-OPP's) [2]. This model has enabled the
development of simple and robust algorithms for performing the most usual and
demanding tasks on solid modeling, such as closed and regularized Boolean
operations, solid splitting, set membership classification ope-rations and measure
operations on 3D-OPP’s. It is natural to ask if the EVM can be extended for mo-
deling n-Dimensional Orthogonal Pseudo-Polytopes (nD-OPPs). In this sense, some
experiments were made, in [8], where the validity of the model was assumed true in

order to represent 4D and
A. Gelbukh, S. Suarez, H. Calvo (Eds.) Received 07/09/07
Advances in Computer Science and Engineering Accepted 19/10/07

Research in Computing Science 29, 2007, pp. 65-80 Final version 24/10/07

66 Ricardo Pérez-Aguila

5D-OPPs. Findly, in [9] was formally proved that the nD-EVM is a complete scheme
for the repre-sentation of nD-OPPs. The meaning of complete scheme was based in
Requicha's set of formal crite-rions that every scheme must have rigorously defined:
Domain, Completeness, Uniqueness and Vali-dity. Although the EVM of an nD-OPP
has been defined as a subset of the nD-OPP's vertices, there is much more
information about the polytope hidden within this subset of vertices. In Sections 2.5
and 2.6 we will describe basic procedures and algorithms in order to obtain some of
thisinformation.

It iswell known that classical storage techniques like celluloid films or analogue
video tapes carry various mechanical and physical degradations that significantly
reduce their visual quality along time [4]. The sampling of analog signals and
expressing them in digital form is used today to guarantee the quality of the
information and make them media independent. As pointed out in [4], in order to
achieve good fidelity it is often necessary to produce a large amount of data. Cartoon
animations usually provide source video sequences to be vectorized. For example,
Koloros & Zé&ra [4] separate in first place the original animation frame into a set of
regions using unsupervised image segmentation techniques. Then they use motion
estimation in order to register parts of the background to stitch and store background
layer as one big image. Shapes of homogeneous color regions in the foreground layer
are converted from raster to vector representation and encoded separately. To search
for frame duplicities and to store new frames they use a pool of already stored frames.
During the playback standard graphics hardware is used to render the background
layer as a textured rectangle and in front of it foreground layer as a set of flat colored
polygons [4]. Another example of vectorization of cartoon animationsis given by the
work of Kwatra and Rossignac [6]. In their approach each region is first represented
as a 3D volume by sweeping its 2D shape through the time. Then their Edgebreaker
compression scheme is used to encode volume geometry. However, these authors ([4]
& [6]) did not address the problem of vectorization for complex color and gray scale
image sequences.

In this work, each frame in a color video is initially represented as a set of
orthogonal polygons whose displaying time depends on the temporal dimension.
Moreover, we will assign one spatial dimension to the color to apply to such
polygons. Hence, we will express a vectorized 2D color video sequence as a Four-
Dimensional Orthogonal Pseudo Polytope (4D-OPP) which will be represented under
the 4D-EVM. In Section 3 we will describe how the source sequences can be
converted in a vectorized video and then compressed, manipulated, and displayed in
screen through the 4D-EVM.

2 The Extreme Vertices Model in the n-Dimensional Space (nD-
EVM)

2.1 Preliminary Background: n-Dimensional Orthogonal Pseudo-Polytopes

Definition 2.1: A Singular n-Dimensional Hyper-Box in " is the continuous
function

Representing and Visualizing Vectorized Videos thorugh the Extreme Vertices Model ... 67

" [01" - [01"
X o I"(x)=x
For ageneral singular kD hyper-box ¢ we will define the boundary of c.
Definition 2.2: For all i, 1 <i <n, the two singular (n-1)D hyper-boxes Iy and I,

are defined as follows: If xe[0,"" then
Loy () = 1" Ceprenns X, 4,0, %, 1) = (510000 %0, 00X 00X,) and
1(7,1) (x) =I" (xl""’xtfl’le"""xnfl) = (xl’""'xzfl’]"xz""’xnfl)
Definition 2.3: In a general singular nD hyper-box ¢ we define the (i,a)-cell as
Clray =€ O 4y

The next definitions indicate in precise way what we consider as the orientation
of a(n-1)D cell.

Definition 2.4: The orientation of an (n-1)D cell coly,, is given by (—p=.

Definition 2.5: An (n-1)D oriented cell is given by the scalar-function product
(-1 -col],,
Definition 2.6: A formal linear combination of singular general kD hyper-boxes, 1 <
k < n, for a
closed set A is called a k-chain.

Definition 2.7 [11]: Given a singular nD hyper-box I' we define the (n-1)-chain,

called the boundary of I', by o) = Z[NN

(i.@)

i=1 \ =01

Definition 2.8 [11]: Given a singular general nD hyper-box ¢ we define the (n-1)-
chain, called the_boundary of c, by 0@ =3 3 v cor,
i=1 \ a=01

Definition 2.9 [11]: The boundary of an n-chain zcl_, where each c; is a singular

general nD hyper-box, is given by o(Xe)=Y o)

Definition 2.10: 4 collection ¢;, ¢, ..., ¢, 1 <k <2", of general singular nD hyper-
boxes is a combination of nD hyper-boxes if and only if

b1011([0,1]")=(QE,O)}A[(VLJX i#), 1<0,) <k)((00" 2, (01"))]

n

In the above definition the first part of the conjunction establishes that the

intersection between all the nD general singular hyper-boxes is the origin, while the
second part establishes that there are not overlapping nD hyper-boxes.
Definition 2.11: We say that an n-Dimensional Orthogonal Pseudo-Polytope p, or
just an nD-OPP p, will be an n-chain composed by nD hyper-boxes arranged in such
way that by selecting a vertex, in any of these hyper-boxes, we have that such vertex
describes a combination of nD hyper-boxes
(Definition 2.10) composed up to 2" hyper-boxes.

Describing nD-OPP's as union of digoint nD hyper-boxes in such way that by
selecting a vertex, in any of these hyper-boxes, we have that such vertex is
surrounded up to 2" hyper-boxes, will be very useful because in the following

68 Ricardo Pérez-Aguila

propositions we consider geometrical and/or topological local analysis over such
vertices and their respective incident hyper-boxes.

2.2 ThenD-EVM: Foundations

Definition 2.12: Let ¢ be a combination of hyper-boxes in the n-Dimensional space.
An Odd Edge will be an edge with an odd number of incident hyper-boxes of c.
Definition 2.13: A brink or extended edge is the maximal uninterrupted segment,
built out of a sequence of collinear and contiguous odd edges of an nD-OPP.
Definition 2.14: We will call Extreme Vertices of an nD-OPP p to the ending vertices
of all the brinks in p. EV(p) will denote to the set of Extreme Vertices of p.

The brinks in an nD-OPP p can be classified according to the main axis to which
they are pardlel. Since the extreme vertices mark the end of brinks in the n
orthogonal directions, is that any of the n possible sets of brinks paralléel to X;-axis, 1
<i <n, produce to the same set EV(p).

Definition 2.15: Let p be an nD-OPP. EV(p) will denote to the set of ending or
extreme vertices of the brinks of p which are parallel to X-axis, 1 <i <n.

Theorem 2.1 [9]: 4 vertex of an nD-OPP p, n=>1, when is locally described by a set of
surrounding nD hyper-boxes, is an extreme vertex if and only if it is surrounded by an
odd number of such nD hyper-boxes.

Definition 2.16: Let p be a nD-OPP. A kD couplet of p, 1<k<n, is the maximal set of
kD cells of p that lies in a kD space, such that a kD cell ey belongs to a kD extended
hypervolume if and only if ey belongs to a (n-1)D cell present in Ap).

Let Q be afinite set of pointsin ; 3. In [2] was defined the ABC-sorted set of Q
as the set resulting from sorting Q according to coordinate A, then to coordinate B,
and then to coordinate C. For instance, a set Q can be ABC-sorted is six different
ways: X1 XoX3, X1 X3Xo, XoX X3, XoX3Xq, X3X1 X5 and X3X,X 1. Now, let p be a 3D-
OPP. According to [2] the Extreme Vertices Model of p, EVM(p), denotes to the
ABC-sorted set of the extreme vertices of p. Then EVM(p) = EV(p) except by the fact
that EV(p) is not necessarily sorted. In this work we will assume that the coordinates
of extreme vertices in the Extreme Vertices Model of an nD-OPP p, EVM(p) are
sorted according to coordinate X1, then to coordinate X,, and so on until coordinate
Xn. That is, we are considering the only ordering X;...X;...X,suchthati-1<i, 1<i <
n.

Definition 2.17: Let p be an nD-OPP. We will define the Extreme Vertices Model of
p, denoted by EVM,,(p), as the model as only stores to all the extreme vertices of p.

2.3 Sections and Slices of nD-OPP’s

Definition 2.18: We define the Projection Operator for (n-1)D cells, points, and set of
points respectively as follows:

o Let (1] 1y () = (0 x,) be an (n-1)D cell embedded in the nD space. 7 (c(l(';‘a)(x)))

will denote the projection of the cell e(I],,(x)) onto an (n-1)D space embedded in
nD space whose supporting hyperplane is perpendicular to X

XIS 7 (el 1y (6))) = (oo B 1000,)

Representing and Visualizing Vectorized Videos thorugh the Extreme Vertices Model ... 69

o Let y=(x,,..x) beapointin i". The projection of that point in the (n-1)D space,
denoted by 7,00 is given by: 7,(0) = (g%, ,)

o Let O be a set of points in | ". We define the projection of the points in Q, denoted
by 7,(0), as the set of points in | "* such that 7,(Q)={pei " :p=7,(x), xeQci"}

In all the cases ¥; is the coordinate corresponding to X-axis to be suppressed.

Definition 2.19: Consider an nD-OPP p:

e Let "Pi be the number of distinct coordinates present in the vertices of p along Xi-

axis, I <i <n.
o Let ©i(P) be the k-th (n-1)D couplet of p which is perpendicular to Xi-axis, 1 < k <

np;.
Definition 2.20: 4 Section is the (n-1)D-OPP, n > 1, resulting from the intersection
between an

nD-OPP p and a (n-1)D hyperplane perpendicular to the Xi-axis, 1 <i <n, which not
coincide with any (n-1)D-couplet of p. A section will be called external or internal
section of p if it is empty or not, respectively. si(p) will refer to the k-th section of p

between o (p) and o (p), I<k<np:

2.4 Computing Coupletsand Sections

Theorem 2.2 [9]: The projection of the set of (n-1)D-couplets, ,E(Q);(P)), of an nD-
OPP P, can be obtained by computing the regularized XOR (&) between the
projections of its previous 7%-(Sli—l(P)) and next ,[_(si(P)) sections, li.e.,
7, (0, (P)) = 7,(S; 1(P)) ®* 7,(Si(P)), Vke[Lnp,]

Theorem 2.3 [9]: The projection of any section, 775(52 (p)), of an nD-OPP p, can be

obtained by computing the regularized XOR between the projection of its previous
section, (St p)), and the projection of its previous couplet , (qy‘k (p)).

2.5 The Regularized XOR operation on the nD-EVM

Theorem 2.4 [2]: Let p and q be two nD-OPP’s having EVM,(p) and EVM (q) as

their respective EVM’s in nD space, then EyM (p®+*q)=EVM,(p) ® EVM,(q)-

This result allows expressing a formula for computing nD-OPP’ s sections from
couplets and vice-versa, by means of their corresponding Extreme Vertices Models.
These formulae are obtained by combining Theorem 2.4 with Theorem 2.2; and
Theorem 2.4 with Theorem 2.3, respectively:

Corollary 2.1[2]: gy, , (z,(®,(p)) = EVM, ,(7,(S,4(p))) ® EVM, ,(7,(S.(p)))
Corollary 22[2]: gy, ,(7,(5.(p)) = EVM, 1 (7,(5,1(p))) ® EVM,,, (7,(®} (p)))

70 Ricardo Pérez-Aguila

Finally, the following corollary can be stated, which correspond to a specific
situation of the XOR operands. It allows computing the union of two nD-OPP’s when
that specific situation is met.

Corollary 2.3 [2]: Let p and q be two disjoint or quasi disjoint nD-OPP’s having
EVM,(p) and EVM,(q) as their respective Extreme Vertices Models, then
EVM,(poq)=EVM,(p)®EVM,(q)-

2.6 Basic Algorithmsfor thenD-EVM

According to Sections 2.2 to 2.4 we can define the following primitive operations
which are based in the functions originally presented in [2]:

Output: An empty nD-EVM. Input: An nD-EVM p
Procedure InitEVM() Output: A coordinate of type CoordType
{ Returns the empty set. 3} (the chosen type for the vertex

coordinates: Integer or Real)

Procedure GetCurrentCoord(EVM p)

{ Returns the common X;-coordinate
of the next (n-1)D couplet to be

Input: An nD-EVM p

Output: A Boolean.

Procedure EndEVM(EVM p)

{ Returns true if the end of p along

X.;-axis has been reached. extracted from p. ¥
Input: An nD-EVM p
Output: An (n-1)D-EVM embedded in Input/Output: An (n-1)D-EVM p embedded
(n-1)D space. in (n-1)D space.
Procedure ReadHvI(EVM p) Input: A coordinate coord of type
{ Extracts next (n-1)D couplet CoordType (the chosen type for the
perpendicular to X;-axis from p. } vertex coordinates: Integer or Real)
Input: An (n-1)D-EVM hvl embedded in Procedure SetCoord(EWM p,
nD space. CoordType coord)
Input/Output: An nD-EVM p { Sets the X;-coordinate to coord
Procedure PutHvI(EVM hvl, EVM p) on every vertex of the (n-1)D
{ Appends an (n-1)D couplet hvl, which couplet p. For coord = 0 it

is perpendicular to X;-axis, to p. } performs the projection z (p)- }
Input: An nD-EVM p
Output: An integer
Procedure GetN(EVM p) Input: Two nD-EVM’s p and q.
{ Returns the number n of dimensions of Output: An nD-EVM

the space where p is embedded. 3} Procedure MergeXor(EVM p, EVM Q)

{ Applies the Exclusive OR operation
to the vertices of p and g and
returns the resulting set. 3}

Input: An nD-EVM p

Output: A Boolean.

Procedure IsEmpty(EVM p)

{ Returns true if p is an empty set. }

Function MergeXor performs an XOR between two nD-EVM’s, that is, it keeps
all vertices belonging to either EVM(p) or EVM,(q) and discards any vertex that
belongs to both EVM,(p) and EVM,(q). Since the model is sorted, this function
consists on a simple merging-like algorithm, and therefore, it runs on linear time [2].
Its complexity is given by O(Card(EVM,(p)) + Card(EVM,(q)) since each vertex
from EVM(p) and EVM,(q) needs to be processed just once. Moreover, according to
Theorem 2.4, the resulting set corresponds to the regularized X OR operation between
p and .

From the above primitive operations, the Algorithms 2.1 and 2.2 may be easily
derived. The Algorithm 2.3 computes the sequence of sections of an nD-OPP p from
its nD-EVM using the previous functions [2]. It sequentially reads the projections of
the (n-1)D couplets 4v/ of the polytope p. Then it computes the sequence of sections
using function GetSection. Each pair of sections S and § (the previous and next

Representing and Visualizing Vectorized Videos thorugh the Extreme Vertices Model ... 71

sections about the current /vl) is processed by a generic processing procedure (called
Process), which performs the desired actions upon S and S;.

Input: An (n-1)D-EVM corresponding to Input: An (n-1)D-EVM corresponding to
section S. An (n-1)D-EVM corresponding section S;. An (n-1)D-EVM corresponding
to couplet hvl. to section S;j.
Output: An (n-1)D-EVM. Output: An (n-1)D-EVM.
Procedure GetSection(EVM S, EVM hvl) Procedure GetHvI(EVM S;, EVM Sj)
// Returns the projection of the // Returns the projection of the
// next section of an nD-OPP // couplet between consecutive
// whose previous section is S. // sections S; and Sj.
return MergeXor(S, plv) return MergeXor(Si, S;j)
end-of-procedure end-of-procedure

Algorithm 2.1. Computing EVMnfl(ﬁl(SL (p))) as Algorithm 2.2. Computing EVMW,1(”1(‘DL(P))) as

EVM,, (7,(S; 1(p))) @ EVM,,(7,(®} (p))) EVM, ,(7(S;4(p))) @ EVM,, (7,(S{(p)))

Input: An nD-EWM p.
Procedure EVM_to_SectionSequence(EVM p)
EVM hvl // Current couplet.
EVM S;,S; // Previous and next sections about hvl.

hvl = InitEWM()
Si = InitEWM()
S; = InitEWM()

J
hvl = ReadHvl(p)
while(Not(EndEVM(P)))
S; = GetSection(S;, hvl)
Process(Si, Sj)
Si = Sj
hvl = ReadHvl(p) // Read next couplet.
end-of-while
end-of-procedure
Algorithm 2.3. Computing the sequence of sections from an nD-OPP p represented through the nD-EVM.

3 Representing Color 2D Videosthrough 4D-OPP'sand the EVM

The procedure described in [2] for processing black & white 2D animations can be
directly extended to control colored frames through a 4D-OPP represented through
the EVM. In the
Figure 1 an example of asimple color 2D-animation composed by four frames whose
resolution is 9 x 9 pixels is shown. In each frame can be identified yellow, red, green
and blue regions. We will use this simple animation to exemplify our procedure. We
will label each colored frame in the animation as f; and m will be the number of such
frames.

el

o Ann
Figure 1. Example of asimple color 2D-animation.

fi

A color animation can be handled as a 4D-OPP in the following way [9]:
a) The red-green-blue components of each pixel will be integrated into a single value.
Such value represents the red-green-blue components as an integer with 32 hits.
Bits 0-7 correspond to the blue value, bits 8-15 correspond to the green value, bits

72 Ricardo Pérez-Aguila

16-23 correspond to the red value and bits 24-31 to the alpha (transparency) value.
Each pixel will now be extruded towards the third dimension where the value
integrating its red-green-blue components will now be considered as its Xj
coordinate (coordinates X, and X, correspond to the original pixels coordinates).
See Figure 2.

X3= color

Figure 2. The 3D space defined for the extrusion of color 2D-pixels.

Let us call xf; to the set composed by the rectangular prisms (the extruded pixels)
of each extru-ded frame f;. It is very important to avoid the zero value in the X3
coordinate because a pixel could not be extruded and therefore its associated prism (a
3D-OPP) won't be obtained. Seein Figur e 3 the sets of prisms xf, which are the result
of the extrusion of frames f; of the animation from Figure 1.

Figure 3. The sets of prisms which are the result of the extrusion of the frames of an animation
(presented in Figure 1).

b)Let prism; be aprism in xf; and npr the number of prismsin that set. Due to all the
prisms in xf; are quasi digoint 3D-OPP's, we can easily obtain the final 3D-OPP
and its respective 3D-EVM of the whole 3D frame by computing the regularized
union of all the prisms in xf;. Then, according to Corollary 2.3, we have to apply
(@l the verticesin aprism; are extreme):

EVM,(F,) = @EVM(prism, < xf,)
i=1

where F, is the 3D frame (a 3D-OPP) that represents the union of all the prismsin
Xfre

Figure 4. The 3D frames that represent a 2D colored animation
(presented in Figure 1. Some of their extreme vertices are shown).

Representing and Visualizing Vectorized Videos thorugh the Extreme Vertices Model ... 73

In the Figure 4 are shown the 3D frames F; from the animation presented in
Figurel.
c)Let us extrude F; into the fourth dimension, and thus obtain a 4D hyperprism
hyperprism; whose bases are F, and its length is proportiona to the time f; is to be
displayed. The new fourth dimension will measure and represent the time. See
Figureb.

m

d)Let ,=Uhnyperprism ,» then p is a 4D-OPP that represents the given color 2D-
k=1
animation. Due to al the m hyperprisms are quasi digoint 4D-OPP's, then the 4D-
EVM for p can be obtained by:

EVM ,(p) = QEVM ,(hyperprism,)
k=1

In the Figur e 6 are shown the couplets perpendicular to the axis that represent the
time, of the 4D-OPP p that represents the animation from Figure 1. The Algorithm
3.1 shows the procedure for converting a set of frames in an animation to a 4D-OPP
that codifiesit. Such 4D-OPP is represented through a4D-EVM.

xg=color ™

x4=time

Figure 5. The process of extrusion of a3D frame in order to obtain ahiyperprism
(some of its extreme vertices are shown).

s

74 Ricardo Pérez-Aguila

7 (p) 3 (p) ®3(p)

5(p) D5(p)
Figure 6. The 3D couplets of the 4D-OPP p that represents a color 2D-animation
(from Figure 1. Their extreme vertices are shown).

Input: A sequence of frames associated to a color 2D animation.
The values xSize and ySize corresponding to the resolution of the input
animation.
Output: The 4D-EVM corresponding to the polytope that codifies frames in the
input animation.
Procedure GenerateEVM-movie(Movie animation, xSize, ySize)
EVM evmMovie // The EVM that will store and codify the input animation.
EVM hvl
EVM Fcurr, Fprev // Current and previous 3D frames being processed.
real t // The amount of time that current processed frame is
// displayed.
Fprev = InitEVM()
for each frame in animation do
Fcurr = InitEVM()
Frame f = animation.nextFrame()
t = animation.getDisplayingTime()
// Frame T is extruded towards 3rd dimension and its 3D-EVM is computed.
for x = 0 until xSize — 1 do
for y = 0 until ySize — 1 do
rgb = getRGBComponents(x, y, F)
// We obtain the EVM of the prism associated to (X, y, rgb).
EVM prism = GetPrismEVM(X, y, rgb)
Fcurr = MergeXor(prism, Fcurr)
end-of-for
end-of-for
// We perform the Xor between the current and previous 3D frames.
hvl = MergeXor(Fcurr, Fprev)
// Amount of time t associated to frame Fcurr is attached to the current
// 3D couplet.
SetCoord(hvl, t)
// A new 3D couplet is attached to the 4D polytope that codifies the
// input animation.
PutHvl(hvl, evmMovie)
Fprev = Fcurr
end-of-for
return evmMovie
end-of-procedure

Algorithm 3.1. Codifying a Color 2D-animation through a4D-OPP and the EVM.

Input: A 4D-EVM p that represents a color 2D-animation.
The graphics context g where the animation is going to be displayed.
Procedure playEVM-movie(EVM p, Q)

EVM hvl // Current 3D couplet in p.

EVM Fprev, Fcurr // Previous and current 3D frames in the animation.

EVM hvIF // Current 2D couplet in Fcurr. It contains polygons
// to display.

int color // The color to apply to the polygons to be displayed.

Fprev = InitEVM()

Representing and Visualizing Vectorized Videos thorugh the Extreme Vertices Model ... 75

hvl = ReadHvl(p)
while(Not(EndEVM(P)))
Fcurr = GetSection(Fprev, hvl) // We get the next 3D frame.
// We proceed to display the current frame in the animation.
while(Not(EndEVM(Fcurr)))
// Get the common coordinate of the vertices in the next 2D
// couplet to be extracted from Fcurr.
color = GetCurrentCoord(Fcurr)
g.setColor(color)
hvlF = ReadHvl(Fcurr)
// Rectangles in the 2D couplet are displayed.
DisplayPolygons(hvIiF, g)
end-of-while
Fprev = Fcurr
hvl = ReadHvI(p) // Read next 3D couplet.
end-of-while
end-of-procedure

Algorithm 3.2. Displaying a color 2D-animation represented through a 4D-OPP and the EVM.
By representing a given color 2D-animation using a 4D-OPP p and its 4D-EVM
we have the following characteristics [9]:
¢ The segquence of the projections of sectionsin p corresponds to the sequence of 3D
frames, i.e. z,(s{(p))=F, -
e Computation of 3D frames. Because p is expressed through the EVM then by
Corollary 22 the 3D-EVM of the frame F;, is computed by
EVM,(F,)= EVMy(F,) ® EVM, z,(01(p))) -

¢ Displaying the 2D colored animation: Each couplet perpendicular to the X3 axisin
each 3D frame F), contains the polygons to display. The colors to apply to those
polygons are referred through the X; coordinate that contains the integrated red-
green-blue components.
In the Figure 7 are presented the sequences of couplets of the 3D frames F; for
the 2D animation presented in Figure 1.

- -
- -
.
<>

F;'s 2D couplets F,'s 2D couplets F3's 2D couplets F/s2D couplets
Figure 7. The sequences of couplets of the 3D frames that represent a color 2D-animation.

The Algorithm 3.2 applies the above ideas in order to extract animation colored
2D frames from a 4D-OPP and display them. Basicaly it extracts the 3D couplets
perpendicular to
X4-axis and computes the sections that correspond to the extrusion to 3D space of the
animation’s 2D frames. When the extrusion of a frame is obtained then its 2D
couplets perpendicular to Xz-axis are extracted. Such 2D couplets are the polygons to
draw and their filling color is assigned according to their common X3 coordinate in
the 3D frame. A 2D couplet is processed through the procedure DisplayPolygons in
the algorithm.

76 Ricardo Pérez-Aguila

X,
$k(q)
. 4 $3(9) 0
i ! .]
; o S 4 . .'
i o) | i)
. .
®i(q) ! !
. o
@, (q) ®5(q)
> X,

Figure 8. A 2D-OPP g whose composing rectangles are being computed. The coordinates
of arectanglein gj;ccl(4) aregiven by the coordinates of the projection of gt(,;) and

common coordinates of its bounding couplets gt(4), @, -

DisplayPolygons is implemented in Algorithm 3.3. In order to draw the rectangles that
compose an input 2D-OPP we will consider the partition induced by its Slices. A Slice from a
2D-OPP can be seen as a set of one or more digoint rectangles whose 1D base is the dlice’s section.
The coordinates that define an specific rectangle in gjicel(p) can be determined through its

respective section SH(p) (the 1D base of gjice!(p)) and the common coordinates of o (p) and
‘I’iu(p) i.e., the common coordinates of the 1D-couplets that bound section SH(p)- See Figure 8.

Input: A 2D-EVM p and the graphics context g where p is going to be displayed.
Output: True if and only if the number of dimensions of p is 2.
False if the number of dimensions of p is not 2, hence, no elements of p
were displayed.
Procedure DisplayPolygons(EVM p, g)
it (GetN(p) # 2) then
return False
EVM hvl // Current 1D couplet in p.
EWM S;i, Sj // Previous and next sections about hvl.
Si = InitEVM()
int rectangleX[4] // Coordinates along X;-axis of a rectangle to be displayed.
int rectangleY[4] // Coordinates along X,-axis of a rectangle to be displayed.
int pointl, point2 // Two consecutive points in 1D section S;j.
ifT (Not(IsEmpty(p))) then
double prevCoord = GetCurrentCoord(p)
hvl = ReadHvI(p)
while(Not(EndEVM(p)))
S; = GetSection(S;, hvl) // Current section is an 1D-OPP.
// We extract the ordered sequence of points in 1D section S;j.
int points[] = GetEVM(S;)
k=0
while(k < points.size)
// Each segment in the 1D current section is extruded and
// displayed.
pointl = points[k]
point2 = points[k+1]
// prevCoord and GetCurrentCoord(p) are the X;-coordinates about
// section S;j.

rectangleX[0] = prevCoord
rectangleY[0] = pointl
rectangleX[1] = prevCoord

Representing and Visualizing Vectorized Videos thorugh the Extreme Vertices Model ... 77

rectangleY[1] = point2
rectangleX[2] = GetCurrentCoord(p)
rectangleY[2] = point2
rectangleX[3] = GetCurrentCoord(p)
rectangleY[3] = pointl

// We display the rectangle.
g-fillPolygon(rectangleX, rectangleY, 4)
k=k+ 2
end-of-while
prevCoord = GetCurrentCoord(p)
SiZSj
hvl = ReadHvl(p)
end-of-while
end-of-if
return True
end-of-procedure

Algorithm 3.3. Displaying the rectangles that compose a 2D-OPP expressed through the EVM.

3.1 Experimental Results

We evaluated our procedure through two blue screen video sequences which were
produced originally at a TV studio of the University of Arts in Bremen [3]. Such
sequences are AVI XVID codified videos (720 x 576, 24 bits color). We converted
such sequences, for our experiment, to videos with resolution of 320 x 240 pixels
(standard TV) and 64 colors.

The first sequence was composed by 146 frames. The 4D-OPP that represented
such set of selected frames has 848,598 extreme vertices. In another experimented
case we considered a second movie sequence whose time length was 100 frames. The
size of the 4D-EVM corresponding to its codification as a 4D-OPP required
1,472,174 extreme vertices.

As can be noted, in the first referenced sequence we required 848,598 extreme
vertices for representing 146 animation frames, while in the second sequence we
required 1,472,174 extreme vertices for representing 100 frames. The reason behind
this behavior was yet identified in [2] EVMa(F/{)=EVMs(kal)®EVMa(”4(®f(P)))’ i.e, the

regions at couplets () represent the regions of a previous frame £ ; that need to be

modified in order to update it to the following frame F;. In other words, a couplet
perpendicular to Xg-axis ¢#(p) only stores the differences between consecutive 3D

frames Fy.; and F;. The way the frames change through time has impact over the
number of extreme vertices in the couplets associated to the 4D-OPP that represents
the animation. The first animation contains a girl who is sat and working with a
computer. As seen in Figure 9, the girl, aong time, is practicaly quiet. Hence, we
have a lot of redundancy between all frames in the animation. Therefore, only
minimal differences are stored in the OPP's couplets, except the first and last
couplets, whose visualization coincide with the first and last frames in the origina
animation. On the other hand, the second animation is a sequence where the girl is
jumping and dancing along the screen from right to left (See Figure 10). In this case
we have a level of redundancy that is minor than the one found in the first animation
because we have more noticeabl e changes between consecutive frames.

78 Ricardo Pérez-Aguila

According to this experiment we can conclude that the EVM’s conciseness,
respect to the representation of animations, depends of the degree of redundancy
between the frames associated to the animations. As noted in [4], cartoon animations
are a good example of animations with an elevated redundancy, but we are one step
further by considering sequences with complex color and gray scale frames.

AN 2

Frame 1 Frame 40 Frame 80 Frame 120 Frame 146
Figure 9. Five main frames taken from the first animation used for conversion to the 4D-EVM: 848,598
extreme vertices were required for encoding 146 frames (original sequence taken from [3]).

Frame 1 Frame 25 Frame 50 Frame 75 Frame 100
Figure 10. Five main frames taken from the second animation used for conversion to the 4D-EVM: There
were required 1,472,174 extreme vertices for encoding 100 frames (original sequence taken from [3]).

4 Conclusions and Future Work

In this work we have described the Extreme Vertices Model in the n-Dimensional
Space

(nD-EVM). The Extreme Vertices Model allows representing nD-OPP’ s by means of
asingle subset of their vertices: the Extreme Vertices. Section 2 isin fact avery brief
description of the capabilities of the model because we have developed simple and
robust algorithms, besides the ones presented in this work, for performing the most
usual and demanding tasks on polytopes modeling such as closed and regularized
Boolean operations, boundary extraction, and set membership classification
operations (see [2] and [9] for more details). In this aspect we mention the
development of other “real world” practical applications under the context of the nD-
EVM, which are widely discussed and modeled in [9]. These practical applications,
through we have showed the versatility of application of the nD-EVM, consider: (1) a
method for comparing images oriented to the evaluation of volcanoes' activity; (2) the
way the nD-EVM enhances Image Based Reasoning; (3) the manipulation and
extraction of information from 3D datasets (see also [10]), and finally, (4) an
application to collision detection between 3D objects through the nD-EVM.

There are many aspects related to the procedure we have described in this work
that can be improved. An idea to consider is concerned to the non-supervised
detection of polygons in the 2D video sequences to be vectorized. As commented in
Section 1, Koloros & Zara[4] and Kwatra & Rossignac [6] consider the detection of
polygons as a core step in their respective methodologies. In the case of [4] detected
polygons in one frame are evaluated with the remaining frames in order to identify
repeated or similar polygons with the objective to compress the final representation of

Representing and Visualizing Vectorized Videos thorugh the Extreme Vertices Model ... 79

the vectorized animation. In [6] detected polygons are considered 3D volumes whose
third dimension is given by time. Finaly, through their Edgebreaker compression the
evolution across time of the polygons are encoded as volume geometry. We are open
to consider the ideas given in [4] and [6] in order to provide much more compression

We commented in Section 3.1 the results obtained from the vectorization of two
video sequences. It is well known that Telecine process is used to transform motion
picture film into digital video format [4]. For reproduction PAL or NTSC standard
under the respective resolution of
720 x 576 or 720 x 480 pixels is used and the fina data is commonly stored at
betacam tapes or di-rectly in the computer. The use of MPEG-1 or MPEG-2
commonly results in lower quality with arti-facts that make the vectorization difficult
[4], and in our case, impacts the cardinality of the obtained EVM'’s. According to the
use of MPEG-4 codification we can expect better quality at reasonable data-rate. For
our intention to vectorize video data we need the best possible quality. We will test
our procedure with video sequences codified in MPEG-4 (yet available in the next
generation DVD formats such as HD-DVD [7]) in order to prove that by obtaining
better quality in our video sources we obtain better compression of the fina
vectorized video represented under the EVM.

' rame o rame 5 rame 7

Figure 11. A sequence of frames that presents a coronagraph image of aradiation storm (taken from [5]).

We will finalize by establishing a question to be addressed. According to our
experiments and by the fact that a couplet perpendicular to Xs-axis ¢ (p) only stores

the differences between consecutive 3D frames F).; and F;. we conclude that by more
level of redundancy between consecutive frames we can expect more conciseness
from the EVM. However, scientific sequences provide us with a huge set of examples
where the degree of redundancy is very low or inexistent. Consider for example the
sequence presented in Figure 11. Such sequence describes a coronagraph image of a
radiation storm which took place in January 20, 2005 [5]. The main characteristic in
this sequence shows that the value of a pixel (inside the main circle) in a frame is
distinct from the value of that same pixel in the next frame. Because of the accuracy
required when these sequences are analyzed, any kind of threshold, which could
elevate the redundancy degree, is prohibited. Hence, the cardinality of the EVM'’s that
represent these sequences is expected to be high. The procedures we have described
consider the representation of a frame by considering the original two spatial
dimensions for each one of its pixels. A possible solution to the addressed problem
could consider the linearization of each frame. That is, a frame can be considered as a
matrix but by stacking its columns on top of one another we obtain a vector. In this
way we have that each pixel can be referenced by only one coordinate in the vector.
Hence, we dea with only one spatia dimension instead of the origina two
dimensions. Obviously we have the way to recover the original position of a pixel

80 Ricardo Pérez-Aguila

given the original width and height of its frame. It can be observed that a 3D-OPP can
represent our animation: X;-axis will correspond to the position in the linearization,
Xo-axis will refer to its red-green-blue integrated components, and Xs-axis will be
associated to time. Algorithms 3.1 to 3.3 should be modified to consider an OPP that
represents a set of linearized frames. In the future we will discuss these described
ideas and the obtained results.

References

10.

11.

Aguilera, Antonio. & Ayala, Dolors. Orthogonal Polyhedra as Geometric Bounds
in Constructive Solid Geometry. Fourth ACM Siggraph Symposium on Solid
Modeling and Applications SM'97, pp. 56-67. Atlanta, USA, 1997.

Aguilera, Antonio. Orthogonal Polyhedra: Study and Application. PhD Thesis.
Universitat Politécnica de Catalunya, 1998.

Center for Computing Technologies, Digital Media/lmage Processing, University
of Bremen. Web site: http://www.tzi.de/tzikeyer/index.html

Koloros, Martin & Zara, Jiri. Coding of vectorized cartoon video data
Proceedings of Spring Conference on Computer Graphics 2006, pp. 177-183.
Comenius University, Bratislava, 2006.

Koppeschaar, Carl. Astronet’s Web Site:
http://www.xs4all.nl/~carlkop/auralert.html

Kwatra, Vivek & Rossignac, Jarek. Space-Time surface simplification and
Edgebreaker compression for 2D cel animations. International Journal of Shape
Modeling, val. 8, No. 2, December 2002.

Moeritz, S. & Diepold, K. Understanding MPEG 4: Technology and Business
Insights. Focal Press, 2004.

Pérez-Aguila, Ricardo. The Extreme Vertices Model in the 4D space and its
Applications in the Visuaization and Analysis of Multidimensional Data Under
the Context of a Geographical Information System. MSc Thesis. Universidad de
las Américas, Puebla. Puebla, México, May 2003.

Pérez-Aguila, Ricardo. Orthogonal Polytopes. Study and Application. PhD
Thesis. Universidad de las Américas - Puebla. Cholula, Puebla, México,
November 13, 2006.

Pérez-Aguila, Ricardo. Modeling and manipulating 3D Datasets through the
Extreme Vertices Model in the n-Dimensional Space (nD-EVM). Accepted and
to appear in the First International Conference on Industrial Informatics,
CICINDIN 2007. To be held in México City, México, November 5 to 9, 2007.
Spivak, M. Calculus on Manifolds: A Modern Approach to Classical Theorems
of Advanced Calculus. HarperCollins Publishers, 1965.

