
Representing and Visualizing Vectorized Videos
through the Extreme Vertices Model

in the n-Dimensional Space (nD-EVM)

Ricardo Pérez-Aguila

Universidad Tecnológica de la Mixteca
Carretera Huajuapan-Acatlima Km. 2.5.

Huajuapan de León, Oaxaca 69000, México
ricardo.perez.aguila@gmail.com

Abstract. Several video compression methods were invented to be able to
effectively store video data on common digital media. One method of
compression we will explore in this work is oriented to vectorized video
sequences. Each frame in a color video is initially represented as a set of
orthogonal polygons whose displaying time depends on the temporal
dimension. Moreover, one spatial dimension will be assigned to the color to
apply to such polygons. Hence, a vectorized 2D color video sequence can be
expressed as a Four-Dimensional Orthogonal Pseudo-Polytope which will be
represented under the Extreme Vertices Model in the n-Dimensional Space
(nD-EVM). The nD-EVM shares the representation of n-Dimensional
Orthogonal Pseudo-Polytopes (nD-OPP’s) by considering only a subset of their
vertices: the Extreme Vertices. This work will describe how the source
sequences can be converted in a vectorized video and then compressed,
expressed, manipulated, and displayed in screen through the 4D-EVM. The
results obtained from the conversion of two video sequences motivate some
observations and properties of the proposed methodology.

Keywords: n-Dimensional Orthogonal Polytopes Modeling, Geometrical and
Topological Representations, Color 2D-Videos Compression, Computational
Geometry.

1 Introduction and Problem Statement

The Extreme Vertices Model (3D-EVM) was originally presented, and widely
described in [1], for modeling 2-manifold Orthogonal Polyhedra and later considering
both Orthogonal Polyhedra
(3D-OP’s) and Pseudo-Polyhedra (3D-OPP’s) [2]. This model has enabled the
development of simple and robust algorithms for performing the most usual and
demanding tasks on solid modeling, such as closed and regularized Boolean
operations, solid splitting, set membership classification ope-rations and measure
operations on 3D-OPP’s. It is natural to ask if the EVM can be extended for mo-
deling n-Dimensional Orthogonal Pseudo-Polytopes (nD-OPPs). In this sense, some
experiments were made, in [8], where the validity of the model was assumed true in
order to represent 4D and

A. Gelbukh, S. Suárez, H. Calvo (Eds.)
Advances in Computer Science and Engineering
Research in Computing Science 29, 2007, pp. 65-80

Received 07/09/07
Accepted 19/10/07

Final version 24/10/07

5D-OPPs. Finally, in [9] was formally proved that the nD-EVM is a complete scheme
for the repre-sentation of nD-OPPs. The meaning of complete scheme was based in
Requicha's set of formal crite-rions that every scheme must have rigorously defined:
Domain, Completeness, Uniqueness and Vali-dity. Although the EVM of an nD-OPP
has been defined as a subset of the nD-OPP’s vertices, there is much more
information about the polytope hidden within this subset of vertices. In Sections 2.5
and 2.6 we will describe basic procedures and algorithms in order to obtain some of
this information.

It is well known that classical storage techniques like celluloid films or analogue
video tapes carry various mechanical and physical degradations that significantly
reduce their visual quality along time [4]. The sampling of analog signals and
expressing them in digital form is used today to guarantee the quality of the
information and make them media independent. As pointed out in [4], in order to
achieve good fidelity it is often necessary to produce a large amount of data. Cartoon
animations usually provide source video sequences to be vectorized. For example,
Koloros & Zára [4] separate in first place the original animation frame into a set of
regions using unsupervised image segmentation techniques. Then they use motion
estimation in order to register parts of the background to stitch and store background
layer as one big image. Shapes of homogeneous color regions in the foreground layer
are converted from raster to vector representation and encoded separately. To search
for frame duplicities and to store new frames they use a pool of already stored frames.
During the playback standard graphics hardware is used to render the background
layer as a textured rectangle and in front of it foreground layer as a set of flat colored
polygons [4]. Another example of vectorization of cartoon animations is given by the
work of Kwatra and Rossignac [6]. In their approach each region is first represented
as a 3D volume by sweeping its 2D shape through the time. Then their Edgebreaker
compression scheme is used to encode volume geometry. However, these authors ([4]
& [6]) did not address the problem of vectorization for complex color and gray scale
image sequences.

In this work, each frame in a color video is initially represented as a set of
orthogonal polygons whose displaying time depends on the temporal dimension.
Moreover, we will assign one spatial dimension to the color to apply to such
polygons. Hence, we will express a vectorized 2D color video sequence as a Four-
Dimensional Orthogonal Pseudo Polytope (4D-OPP) which will be represented under
the 4D-EVM. In Section 3 we will describe how the source sequences can be
converted in a vectorized video and then compressed, manipulated, and displayed in
screen through the 4D-EVM.

2 The Extreme Vertices Model in the n-Dimensional Space (nD-
EVM)

2.1 Preliminary Background: n-Dimensional Orthogonal Pseudo-Polytopes

Definition 2.1: A Singular n-Dimensional Hyper-Box in n¡ is the continuous
function

66 Ricardo Pérez-Aguila

: [0,1] [0,1]
()

n n n

n

I
x I x x

→
=:

For a general singular kD hyper-box c we will define the boundary of c.
Definition 2.2: For all i, 1 ≤ i ≤ n, the two singular (n-1)D hyper-boxes

(,0)
n
iI and

(,1)
n
iI

are defined as follows: If 1[0,1]nx −∈ then

(,0) 1 1 1 1 1 1() (,..., , 0, ,...,) (,..., , 0, ,...,)n n
i i i n i i nI x I x x x x x x x x− − − −= = and

(,1) 1 1 1 1 1 1() (,..., ,1, ,...,) (,..., ,1, ,...,)n n
i i i n i i nI x I x x x x x x x x− − − −= =

Definition 2.3: In a general singular nD hyper-box c we define the (i,α)-cell as
(,) (,)

n
i ic c Iα α= o

The next definitions indicate in precise way what we consider as the orientation
of a (n-1)D cell.

Definition 2.4: The orientation of an (n-1)D cell

(,)
n
ic I αo is given by (1) iα+− .

Definition 2.5: An (n-1)D oriented cell is given by the scalar-function product
(,)(1)i n
ic Iα
α

+− ⋅ o

Definition 2.6: A formal linear combination of singular general kD hyper-boxes, 1 ≤
k ≤ n, for a
closed set A is called a k-chain.
Definition 2.7 [11]: Given a singular nD hyper-box In we define the (n-1)-chain,
called the boundary of In, by

(,)
1 0,1

() (1)
n

n i n
i

i
I Iα

α
α

+

= =

⎛ ⎞
∂ = − ⋅⎜ ⎟

⎝ ⎠
∑ ∑

Definition 2.8 [11]: Given a singular general nD hyper-box c we define the (n-1)-
chain, called the boundary of c, by

(,)
1 0,1

() (1)
n

i n
i

i
c c Iα

α
α

+

= =

⎛ ⎞
∂ = − ⋅⎜ ⎟

⎝ ⎠
∑ ∑ o

Definition 2.9 [11]: The boundary of an n-chain ic∑ , where each ci is a singular
general nD hyper-box, is given by () ()i ic c∂ = ∂∑ ∑

Definition 2.10: A collection c1, c2, …, ck, 1 ≤ k ≤ 2n, of general singular nD hyper-
boxes is a combination of nD hyper-boxes if and only if

{ ()()
1

([0,1]) (0,...,0) , , , 1 , ([0,1]) ([0,1])
k

n n n
i j

n

c i j i j i j k c cα
α=

⎡ ⎤
⎡ ⎤= ∧ ∀ ≠ ≤ ≤ ≠⎢ ⎥ ⎣ ⎦

⎣ ⎦
I

In the above definition the first part of the conjunction establishes that the
intersection between all the nD general singular hyper-boxes is the origin, while the
second part establishes that there are not overlapping nD hyper-boxes.
Definition 2.11: We say that an n-Dimensional Orthogonal Pseudo-Polytope p, or
just an nD-OPP p, will be an n-chain composed by nD hyper-boxes arranged in such
way that by selecting a vertex, in any of these hyper-boxes, we have that such vertex
describes a combination of nD hyper-boxes
(Definition 2.10) composed up to 2n hyper-boxes.

Describing nD-OPP’s as union of disjoint nD hyper-boxes in such way that by
selecting a vertex, in any of these hyper-boxes, we have that such vertex is
surrounded up to 2n hyper-boxes, will be very useful because in the following

Representing and Visualizing Vectorized Videos thorugh the Extreme Vertices Model ... 67

propositions we consider geometrical and/or topological local analysis over such
vertices and their respective incident hyper-boxes.

2.2 The nD-EVM: Foundations

Definition 2.12: Let c be a combination of hyper-boxes in the n-Dimensional space.
An Odd Edge will be an edge with an odd number of incident hyper-boxes of c.
Definition 2.13: A brink or extended edge is the maximal uninterrupted segment,
built out of a sequence of collinear and contiguous odd edges of an nD-OPP.
Definition 2.14: We will call Extreme Vertices of an nD-OPP p to the ending vertices
of all the brinks in p. EV(p) will denote to the set of Extreme Vertices of p.

The brinks in an nD-OPP p can be classified according to the main axis to which
they are parallel. Since the extreme vertices mark the end of brinks in the n
orthogonal directions, is that any of the n possible sets of brinks parallel to Xi-axis, 1
≤ i ≤ n, produce to the same set EV(p).
Definition 2.15: Let p be an nD-OPP. EVi(p) will denote to the set of ending or
extreme vertices of the brinks of p which are parallel to Xi-axis, 1 ≤ i ≤ n.
Theorem 2.1 [9]: A vertex of an nD-OPP p, n≥1, when is locally described by a set of
surrounding nD hyper-boxes, is an extreme vertex if and only if it is surrounded by an
odd number of such nD hyper-boxes.
Definition 2.16: Let p be a nD-OPP. A kD couplet of p, 1<k<n, is the maximal set of
kD cells of p that lies in a kD space, such that a kD cell e0 belongs to a kD extended
hypervolume if and only if e0 belongs to a (n-1)D cell present in ∂(p).

Let Q be a finite set of points in 3¡ . In [2] was defined the ABC-sorted set of Q
as the set resulting from sorting Q according to coordinate A, then to coordinate B,
and then to coordinate C. For instance, a set Q can be ABC-sorted is six different
ways: X1X2X3, X1X3X2, X2X1X3, X2X3X1, X3X1X2 and X3X2X1. Now, let p be a 3D-
OPP. According to [2] the Extreme Vertices Model of p, EVM(p), denotes to the
ABC-sorted set of the extreme vertices of p. Then EVM(p) = EV(p) except by the fact
that EV(p) is not necessarily sorted. In this work we will assume that the coordinates
of extreme vertices in the Extreme Vertices Model of an nD-OPP p, EVMn(p) are
sorted according to coordinate X1, then to coordinate X2, and so on until coordinate
Xn. That is, we are considering the only ordering X1…Xi…Xn such that i–1 < i, 1 < i ≤
n.
Definition 2.17: Let p be an nD-OPP. We will define the Extreme Vertices Model of
p, denoted by EVMn(p), as the model as only stores to all the extreme vertices of p.

2.3 Sections and Slices of nD-OPP’s

Definition 2.18: We define the Projection Operator for (n-1)D cells, points, and set of
points respectively as follows:
• Let

(,) 1(()) (,..,)n
i nc I x x xα = be an (n-1)D cell embedded in the nD space. ()(,)(())n

j ic I xαπ

will denote the projection of the cell
(,)(())n
ic I xα

 onto an (n-1)D space embedded in
nD space whose supporting hyperplane is perpendicular to Xj-
axis: ()(,) 1 ˆ(()) (,..., ,...,)n

j i j nc I x x x xαπ =

68 Ricardo Pérez-Aguila

• Let
1(,...,)nv x x= be a point in n¡ . The projection of that point in the (n-1)D space,

denoted by ()j vπ , is given by:
1 ˆ() (,..., ,...,)j j nv x x xπ =

• Let Q be a set of points in n¡ . We define the projection of the points in Q, denoted
by ()j Qπ , as the set of points in 1n−¡ such that { }1() : (),n n

j jQ p p x x Qπ π−= ∈ = ∈ ⊂¡ ¡

In all the cases ˆ jx is the coordinate corresponding to Xj-axis to be suppressed.
Definition 2.19: Consider an nD-OPP p:
• Let inp be the number of distinct coordinates present in the vertices of p along Xi-

axis, 1 ≤ i ≤ n.
• Let ()i

k pΦ be the k-th (n-1)D couplet of p which is perpendicular to Xi-axis, 1 ≤ k ≤

npi.
Definition 2.20: A Section is the (n-1)D-OPP, n > 1, resulting from the intersection
between an
nD-OPP p and a (n-1)D hyperplane perpendicular to the Xi-axis, 1 ≤ i ≤ n, which not
coincide with any (n-1)D-couplet of p. A section will be called external or internal
section of p if it is empty or not, respectively. ()i

kS p will refer to the k-th section of p

between ()i
k pΦ and

1()i
k p+Φ , 1≤ k<npi.

2.4 Computing Couplets and Sections

Theorem 2.2 [9]: The projection of the set of (n-1)D-couplets, ()()i
i k Pπ Φ , of an nD-

OPP P, can be obtained by computing the regularized XOR (⊗) between the
projections of its previous ()1()i

i kS Pπ −
 and next ()()i

i kS Pπ sections, i.e.,

() () ()1() () * () , [1,]i i i
i k i k i k iP S P S P k npπ π π−Φ = ⊗ ∀ ∈

Theorem 2.3 [9]: The projection of any section, ()()i
i kS pπ , of an nD-OPP p, can be

obtained by computing the regularized XOR between the projection of its previous
section, ()1()i

i kS pπ −
, and the projection of its previous couplet ()()i

i k pπ Φ .

2.5 The Regularized XOR operation on the nD-EVM

Theorem 2.4 [2]: Let p and q be two nD-OPP’s having ()nEVM p and ()nEVM q as
their respective EVM’s in nD space, then (*) () ()n n nEVM p q EVM p EVM q⊗ = ⊗ .

This result allows expressing a formula for computing nD-OPP’s sections from
couplets and vice-versa, by means of their corresponding Extreme Vertices Models.
These formulae are obtained by combining Theorem 2.4 with Theorem 2.2; and
Theorem 2.4 with Theorem 2.3, respectively:
Corollary 2.1 [2]: () () ()1 1 1 1(()) (()) (())i i i

n i k n i k n i kEVM p EVM S p EVM S pπ π π− − − −Φ = ⊗

Corollary 2.2 [2]: () () ()1 1 1 1(()) (()) (())i i i
n i k n i k n i kEVM S p EVM S p EVM pπ π π− − − −= ⊗ Φ

Representing and Visualizing Vectorized Videos thorugh the Extreme Vertices Model ... 69

Finally, the following corollary can be stated, which correspond to a specific
situation of the XOR operands. It allows computing the union of two nD-OPP’s when
that specific situation is met.
Corollary 2.3 [2]: Let p and q be two disjoint or quasi disjoint nD-OPP’s having
EVMn(p) and EVMn(q) as their respective Extreme Vertices Models, then

() () ()n n nEVM p q EVM p EVM q∪ = ⊗ .

2.6 Basic Algorithms for the nD-EVM

According to Sections 2.2 to 2.4 we can define the following primitive operations
which are based in the functions originally presented in [2]:

Output: An empty nD-EVM.
Procedure InitEVM()
{ Returns the empty set. }

Input: An nD-EVM p
Output: A Boolean.
Procedure EndEVM(EVM p)
{ Returns true if the end of p along
 X1-axis has been reached. }

Input: An nD-EVM p
Output: An (n-1)D-EVM embedded in
(n-1)D space.
Procedure ReadHvl(EVM p)
{ Extracts next (n-1)D couplet
 perpendicular to X1-axis from p. }

Input: An (n-1)D-EVM hvl embedded in
nD space.
Input/Output: An nD-EVM p
Procedure PutHvl(EVM hvl, EVM p)
{ Appends an (n-1)D couplet hvl, which
 is perpendicular to X1-axis, to p. }

Input: An nD-EVM p
Output: An integer
Procedure GetN(EVM p)
{ Returns the number n of dimensions of
 the space where p is embedded. }

Input: An nD-EVM p
Output: A Boolean.
Procedure IsEmpty(EVM p)
{ Returns true if p is an empty set. }

Input: An nD-EVM p
Output: A coordinate of type CoordType
(the chosen type for the vertex
coordinates: Integer or Real)
Procedure GetCurrentCoord(EVM p)
{ Returns the common X1-coordinate
 of the next (n-1)D couplet to be
 extracted from p. }

Input/Output: An (n-1)D-EVM p embedded
in (n-1)D space.
Input: A coordinate coord of type
CoordType (the chosen type for the
vertex coordinates: Integer or Real)
Procedure SetCoord(EVM p,
CoordType coord)
{ Sets the X1-coordinate to coord
 on every vertex of the (n-1)D
 couplet p. For coord = 0 it
 performs the projection

1()pπ . }

Input: Two nD-EVM’s p and q.
Output: An nD-EVM
Procedure MergeXor(EVM p, EVM q)
{ Applies the Exclusive OR operation
 to the vertices of p and q and
 returns the resulting set. }

Function MergeXor performs an XOR between two nD-EVM’s, that is, it keeps
all vertices belonging to either EVMn(p) or EVMn(q) and discards any vertex that
belongs to both EVMn(p) and EVMn(q). Since the model is sorted, this function
consists on a simple merging-like algorithm, and therefore, it runs on linear time [2].
Its complexity is given by O(Card(EVMn(p)) + Card(EVMn(q)) since each vertex
from EVMn(p) and EVMn(q) needs to be processed just once. Moreover, according to
Theorem 2.4, the resulting set corresponds to the regularized XOR operation between
p and q.

From the above primitive operations, the Algorithms 2.1 and 2.2 may be easily
derived. The Algorithm 2.3 computes the sequence of sections of an nD-OPP p from
its nD-EVM using the previous functions [2]. It sequentially reads the projections of
the (n-1)D couplets hvl of the polytope p. Then it computes the sequence of sections
using function GetSection. Each pair of sections Si and Sj (the previous and next

70 Ricardo Pérez-Aguila

sections about the current hvl) is processed by a generic processing procedure (called
Process), which performs the desired actions upon Si and Sj.

Input: An (n-1)D-EVM corresponding to
section S. An (n-1)D-EVM corresponding
to couplet hvl.
Output: An (n-1)D-EVM.
Procedure GetSection(EVM S, EVM hvl)

// Returns the projection of the
// next section of an nD-OPP
// whose previous section is S.
return MergeXor(S, plv)

end-of-procedure

Algorithm 2.1. Computing ()1 1(())i

n kEVM S pπ−
 as

() ()1 1 1 1 1(()) (())i i
n k n kEVM S p EVM pπ π− − −⊗ Φ

Input: An (n-1)D-EVM corresponding to
section Si. An (n-1)D-EVM corresponding
to section Sj.
Output: An (n-1)D-EVM.
Procedure GetHvl(EVM Si, EVM Sj)
 // Returns the projection of the
 // couplet between consecutive
 // sections Si and Sj.
 return MergeXor(Si, Sj)
end-of-procedure

Algorithm 2.2. Computing ()1 1(())i

n kEVM pπ− Φ as

() ()1 1 1 1 1(()) (())i i
n k n kEVM S p EVM S pπ π− − −⊗

Input: An nD-EVM p.
Procedure EVM_to_SectionSequence(EVM p)

 EVM hvl // Current couplet.
 EVM Si,Sj // Previous and next sections about hvl.
 hvl = InitEVM()
 Si = InitEVM()
 Sj = InitEVM()
 hvl = ReadHvl(p)
 while(Not(EndEVM(p)))
 Sj = GetSection(Si, hvl)
 Process(Si, Sj)
 Si = Sj

hvl = ReadHvl(p) // Read next couplet.
 end-of-while

end-of-procedure
Algorithm 2.3. Computing the sequence of sections from an nD-OPP p represented through the nD-EVM.

3 Representing Color 2D Videos through 4D-OPP's and the EVM

The procedure described in [2] for processing black & white 2D animations can be
directly extended to control colored frames through a 4D-OPP represented through
the EVM. In the
Figure 1 an example of a simple color 2D-animation composed by four frames whose
resolution is 9 × 9 pixels is shown. In each frame can be identified yellow, red, green
and blue regions. We will use this simple animation to exemplify our procedure. We
will label each colored frame in the animation as fk and m will be the number of such
frames.

f1

f2

f3

f4
Figure 1. Example of a simple color 2D-animation.

A color animation can be handled as a 4D-OPP in the following way [9]:

a) The red-green-blue components of each pixel will be integrated into a single value.
Such value represents the red-green-blue components as an integer with 32 bits.
Bits 0-7 correspond to the blue value, bits 8-15 correspond to the green value, bits

Representing and Visualizing Vectorized Videos thorugh the Extreme Vertices Model ... 71

16-23 correspond to the red value and bits 24-31 to the alpha (transparency) value.
Each pixel will now be extruded towards the third dimension where the value
integrating its red-green-blue components will now be considered as its X3
coordinate (coordinates X1 and X2 correspond to the original pixels' coordinates).
See Figure 2.

x = color3

x1x2

Figure 2. The 3D space defined for the extrusion of color 2D-pixels.

Let us call xfk to the set composed by the rectangular prisms (the extruded pixels)
of each extru-ded frame fk. It is very important to avoid the zero value in the X3
coordinate because a pixel could not be extruded and therefore its associated prism (a
3D-OPP) won't be obtained. See in Figure 3 the sets of prisms xfk which are the result
of the extrusion of frames fk of the animation from Figure 1.

xf1 xf2 xf3 xf4
Figure 3. The sets of prisms which are the result of the extrusion of the frames of an animation

(presented in Figure 1).

b) Let prismi be a prism in xfk and npr the number of prisms in that set. Due to all the
prisms in xfk are quasi disjoint 3D-OPP's, we can easily obtain the final 3D-OPP
and its respective 3D-EVM of the whole 3D frame by computing the regularized
union of all the prisms in xfk. Then, according to Corollary 2.3, we have to apply
(all the vertices in a prismi are extreme):

3 3
1

() ()
npr

k i k
i

EVM F EVM prism xf
=

= ∈⊗

where Fk is the 3D frame (a 3D-OPP) that represents the union of all the prisms in
xfk.

F1 F2 F3 F4

Figure 4. The 3D frames that represent a 2D colored animation
(presented in Figure 1. Some of their extreme vertices are shown).

72 Ricardo Pérez-Aguila

In the Figure 4 are shown the 3D frames Fk from the animation presented in
Figure 1.
c) Let us extrude Fk into the fourth dimension, and thus obtain a 4D hyperprism

hyperprismk whose bases are Fk and its length is proportional to the time fk is to be
displayed. The new fourth dimension will measure and represent the time. See
Figure 5.

d) Let
1

m

k
k

p hyperprism
=

=U , then p is a 4D-OPP that represents the given color 2D-

animation. Due to all the m hyperprisms are quasi disjoint 4D-OPP's, then the 4D-
EVM for p can be obtained by:

4 4
1

() ()
m

k
k

EVM p EVM hyperprism
=

=⊗

In the Figure 6 are shown the couplets perpendicular to the axis that represent the
time, of the 4D-OPP p that represents the animation from Figure 1. The Algorithm
3.1 shows the procedure for converting a set of frames in an animation to a 4D-OPP
that codifies it. Such 4D-OPP is represented through a 4D-EVM.

x =color 3

x1x 2

x =time 4

Figure 5. The process of extrusion of a 3D frame in order to obtain a hyperprism

(some of its extreme vertices are shown).

Representing and Visualizing Vectorized Videos thorugh the Extreme Vertices Model ... 73

4
1 ()pΦ 4

2 ()pΦ 4
3 ()pΦ

4
4 ()pΦ 4

5 ()pΦ
Figure 6. The 3D couplets of the 4D-OPP p that represents a color 2D-animation

(from Figure 1. Their extreme vertices are shown).

Input: A sequence of frames associated to a color 2D animation.
The values xSize and ySize corresponding to the resolution of the input
animation.

Output: The 4D-EVM corresponding to the polytope that codifies frames in the
 input animation.
Procedure GenerateEVM-movie(Movie animation, xSize, ySize)
 EVM evmMovie // The EVM that will store and codify the input animation.
 EVM hvl
 EVM Fcurr, Fprev // Current and previous 3D frames being processed.
 real t // The amount of time that current processed frame is

// displayed.
 Fprev = InitEVM()
 for each frame in animation do
 Fcurr = InitEVM()

Frame f = animation.nextFrame()
 t = animation.getDisplayingTime()
 // Frame f is extruded towards 3rd dimension and its 3D-EVM is computed.
 for x = 0 until xSize – 1 do
 for y = 0 until ySize – 1 do
 rgb = getRGBComponents(x, y, f)
 // We obtain the EVM of the prism associated to (x, y, rgb).
 EVM prism = GetPrismEVM(x, y, rgb)
 Fcurr = MergeXor(prism, Fcurr)
 end-of-for

end-of-for
 // We perform the Xor between the current and previous 3D frames.

hvl = MergeXor(Fcurr, Fprev)
 // Amount of time t associated to frame Fcurr is attached to the current
 // 3D couplet.

SetCoord(hvl, t)
// A new 3D couplet is attached to the 4D polytope that codifies the
// input animation.

 PutHvl(hvl, evmMovie)
 Fprev = Fcurr
 end-of-for
 return evmMovie
end-of-procedure

Algorithm 3.1. Codifying a Color 2D-animation through a 4D-OPP and the EVM.

Input: A 4D-EVM p that represents a color 2D-animation.

The graphics context g where the animation is going to be displayed.
Procedure playEVM-movie(EVM p, g)
 EVM hvl // Current 3D couplet in p.
 EVM Fprev, Fcurr // Previous and current 3D frames in the animation.
 EVM hvlF // Current 2D couplet in Fcurr. It contains polygons

// to display.
 int color // The color to apply to the polygons to be displayed.
 Fprev = InitEVM()

74 Ricardo Pérez-Aguila

 hvl = ReadHvl(p)
 while(Not(EndEVM(p)))
 Fcurr = GetSection(Fprev, hvl) // We get the next 3D frame.
 // We proceed to display the current frame in the animation.
 while(Not(EndEVM(Fcurr)))

// Get the common coordinate of the vertices in the next 2D
// couplet to be extracted from Fcurr.
color = GetCurrentCoord(Fcurr)
g.setColor(color)
hvlF = ReadHvl(Fcurr)
// Rectangles in the 2D couplet are displayed.
DisplayPolygons(hvlF, g)

 end-of-while
 Fprev = Fcurr
 hvl = ReadHvl(p) // Read next 3D couplet.
 end-of-while
end-of-procedure

Algorithm 3.2. Displaying a color 2D-animation represented through a 4D-OPP and the EVM.

By representing a given color 2D-animation using a 4D-OPP p and its 4D-EVM
we have the following characteristics [9]:
• The sequence of the projections of sections in p corresponds to the sequence of 3D

frames, i.e., ()4
4 ()k kS p Fπ = .

• Computation of 3D frames: Because p is expressed through the EVM then by
Corollary 2.2 the 3D-EVM of the frame Fk is computed by

() () ()()4
3 3 1 3 4 ()k k kEVM F EVM F EVM pπ−= ⊗ Φ .

• Displaying the 2D colored animation: Each couplet perpendicular to the X3 axis in
each 3D frame Fk contains the polygons to display. The colors to apply to those
polygons are referred through the X3 coordinate that contains the integrated red-
green-blue components.

 In the Figure 7 are presented the sequences of couplets of the 3D frames Fk for
the 2D animation presented in Figure 1.

F1’s 2D couplets

F2’s 2D couplets

F3’s 2D couplets

F4’s 2D couplets
Figure 7. The sequences of couplets of the 3D frames that represent a color 2D-animation.

The Algorithm 3.2 applies the above ideas in order to extract animation colored
2D frames from a 4D-OPP and display them. Basically it extracts the 3D couplets
perpendicular to
X4-axis and computes the sections that correspond to the extrusion to 3D space of the
animation’s 2D frames. When the extrusion of a frame is obtained then its 2D
couplets perpendicular to X3-axis are extracted. Such 2D couplets are the polygons to
draw and their filling color is assigned according to their common X3 coordinate in
the 3D frame. A 2D couplet is processed through the procedure DisplayPolygons in
the algorithm.

Representing and Visualizing Vectorized Videos thorugh the Extreme Vertices Model ... 75

 X2

X1

Figure 8. A 2D-OPP q whose composing rectangles are being computed. The coordinates
of a rectangle in 1()iSlice q are given by the coordinates of the projection of 1()iS q and

common coordinates of its bounding couplets 1 1
1(),i iq +Φ Φ .

DisplayPolygons is implemented in Algorithm 3.3. In order to draw the rectangles that
compose an input 2D-OPP we will consider the partition induced by its Slices. A Slice from a
2D-OPP can be seen as a set of one or more disjoint rectangles whose 1D base is the slice’s section.
The coordinates that define an specific rectangle in 1 ()kSlice p can be determined through its
respective section 1()kS p (the 1D base of 1 ()kSlice p) and the common coordinates of 1 ()k pΦ and

1
1()k p+Φ , i.e., the common coordinates of the 1D-couplets that bound section 1()kS p . See Figure 8.

Input: A 2D-EVM p and the graphics context g where p is going to be displayed.
Output: True if and only if the number of dimensions of p is 2.

False if the number of dimensions of p is not 2, hence, no elements of p
were displayed.

Procedure DisplayPolygons(EVM p, g)
 if (GetN(p) ≠ 2) then
 return False
 EVM hvl // Current 1D couplet in p.
 EVM Si, Sj // Previous and next sections about hvl.
 Si = InitEVM()
 int rectangleX[4] // Coordinates along X1-axis of a rectangle to be displayed.
 int rectangleY[4] // Coordinates along X2-axis of a rectangle to be displayed.
 int point1, point2 // Two consecutive points in 1D section Sj.
 if (Not(IsEmpty(p))) then
 double prevCoord = GetCurrentCoord(p)
 hvl = ReadHvl(p)
 while(Not(EndEVM(p)))
 Sj = GetSection(Si, hvl) // Current section is an 1D-OPP.

 // We extract the ordered sequence of points in 1D section Sj.
 int points[] = GetEVM(Sj)
 k = 0
 while(k < points.size)
 // Each segment in the 1D current section is extruded and
 // displayed.
 point1 = points[k]
 point2 = points[k+1]
 // prevCoord and GetCurrentCoord(p) are the X1-coordinates about

// section Sj.
 rectangleX[0] = prevCoord
 rectangleY[0] = point1
 rectangleX[1] = prevCoord

1
1()qΦ

1
2 ()qΦ 1

3 ()qΦ

1
4 ()qΦ 1

5 ()qΦ

1
3 ()S q

1
1 ()S q

1
2 ()S q

1
4 ()S q

76 Ricardo Pérez-Aguila

 rectangleY[1] = point2
 rectangleX[2] = GetCurrentCoord(p)
 rectangleY[2] = point2
 rectangleX[3] = GetCurrentCoord(p)
 rectangleY[3] = point1
 // We display the rectangle.
 g.fillPolygon(rectangleX, rectangleY, 4)
 k = k + 2
 end-of-while
 prevCoord = GetCurrentCoord(p)
 Si = Sj
 hvl = ReadHvl(p)
 end-of-while
 end-of-if
 return True
end-of-procedure

Algorithm 3.3. Displaying the rectangles that compose a 2D-OPP expressed through the EVM.

3.1 Experimental Results

We evaluated our procedure through two blue screen video sequences which were
produced originally at a TV studio of the University of Arts in Bremen [3]. Such
sequences are AVI XVID codified videos (720 × 576, 24 bits color). We converted
such sequences, for our experiment, to videos with resolution of 320 × 240 pixels
(standard TV) and 64 colors.

The first sequence was composed by 146 frames. The 4D-OPP that represented
such set of selected frames has 848,598 extreme vertices. In another experimented
case we considered a second movie sequence whose time length was 100 frames. The
size of the 4D-EVM corresponding to its codification as a 4D-OPP required
1,472,174 extreme vertices.

As can be noted, in the first referenced sequence we required 848,598 extreme
vertices for representing 146 animation frames, while in the second sequence we
required 1,472,174 extreme vertices for representing 100 frames. The reason behind
this behavior was yet identified in [2]: () () ()()4

3 3 1 3 4 ()k k kEVM F EVM F EVM pπ−= ⊗ Φ , i.e., the

regions at couplets 4 ()k pΦ represent the regions of a previous frame Fk-1 that need to be
modified in order to update it to the following frame Fk. In other words, a couplet
perpendicular to X4-axis 4 ()k pΦ only stores the differences between consecutive 3D
frames Fk-1 and Fk. The way the frames change through time has impact over the
number of extreme vertices in the couplets associated to the 4D-OPP that represents
the animation. The first animation contains a girl who is sat and working with a
computer. As seen in Figure 9, the girl, along time, is practically quiet. Hence, we
have a lot of redundancy between all frames in the animation. Therefore, only
minimal differences are stored in the OPP’s couplets, except the first and last
couplets, whose visualization coincide with the first and last frames in the original
animation. On the other hand, the second animation is a sequence where the girl is
jumping and dancing along the screen from right to left (See Figure 10). In this case
we have a level of redundancy that is minor than the one found in the first animation
because we have more noticeable changes between consecutive frames.

Representing and Visualizing Vectorized Videos thorugh the Extreme Vertices Model ... 77

According to this experiment we can conclude that the EVM’s conciseness,
respect to the representation of animations, depends of the degree of redundancy
between the frames associated to the animations. As noted in [4], cartoon animations
are a good example of animations with an elevated redundancy, but we are one step
further by considering sequences with complex color and gray scale frames.

Frame 1 Frame 40 Frame 80 Frame 120 Frame 146

Figure 9. Five main frames taken from the first animation used for conversion to the 4D-EVM: 848,598
extreme vertices were required for encoding 146 frames (original sequence taken from [3]).

Frame 1 Frame 25 Frame 50 Frame 75 Frame 100

Figure 10. Five main frames taken from the second animation used for conversion to the 4D-EVM: There
were required 1,472,174 extreme vertices for encoding 100 frames (original sequence taken from [3]).

4 Conclusions and Future Work

In this work we have described the Extreme Vertices Model in the n-Dimensional
Space
(nD-EVM). The Extreme Vertices Model allows representing nD-OPP’s by means of
a single subset of their vertices: the Extreme Vertices. Section 2 is in fact a very brief
description of the capabilities of the model because we have developed simple and
robust algorithms, besides the ones presented in this work, for performing the most
usual and demanding tasks on polytopes modeling such as closed and regularized
Boolean operations, boundary extraction, and set membership classification
operations (see [2] and [9] for more details). In this aspect we mention the
development of other “real world” practical applications under the context of the nD-
EVM, which are widely discussed and modeled in [9]. These practical applications,
through we have showed the versatility of application of the nD-EVM, consider: (1) a
method for comparing images oriented to the evaluation of volcanoes’ activity; (2) the
way the nD-EVM enhances Image Based Reasoning; (3) the manipulation and
extraction of information from 3D datasets (see also [10]), and finally, (4) an
application to collision detection between 3D objects through the nD-EVM.

There are many aspects related to the procedure we have described in this work
that can be improved. An idea to consider is concerned to the non-supervised
detection of polygons in the 2D video sequences to be vectorized. As commented in
Section 1, Koloros & Zára [4] and Kwatra & Rossignac [6] consider the detection of
polygons as a core step in their respective methodologies. In the case of [4] detected
polygons in one frame are evaluated with the remaining frames in order to identify
repeated or similar polygons with the objective to compress the final representation of

78 Ricardo Pérez-Aguila

the vectorized animation. In [6] detected polygons are considered 3D volumes whose
third dimension is given by time. Finally, through their Edgebreaker compression the
evolution across time of the polygons are encoded as volume geometry. We are open
to consider the ideas given in [4] and [6] in order to provide much more compression

We commented in Section 3.1 the results obtained from the vectorization of two
video sequences. It is well known that Telecine process is used to transform motion
picture film into digital video format [4]. For reproduction PAL or NTSC standard
under the respective resolution of
720 × 576 or 720 × 480 pixels is used and the final data is commonly stored at
betacam tapes or di-rectly in the computer. The use of MPEG-1 or MPEG-2
commonly results in lower quality with arti-facts that make the vectorization difficult
[4], and in our case, impacts the cardinality of the obtained EVM’s. According to the
use of MPEG-4 codification we can expect better quality at reasonable data-rate. For
our intention to vectorize video data we need the best possible quality. We will test
our procedure with video sequences codified in MPEG-4 (yet available in the next
generation DVD formats such as HD-DVD [7]) in order to prove that by obtaining
better quality in our video sources we obtain better compression of the final
vectorized video represented under the EVM.

Frame 1 Frame 3 Frame 5 Frame 7

Figure 11. A sequence of frames that presents a coronagraph image of a radiation storm (taken from [5]).

We will finalize by establishing a question to be addressed. According to our

experiments and by the fact that a couplet perpendicular to X4-axis 4 ()k pΦ only stores
the differences between consecutive 3D frames Fk-1 and Fk. we conclude that by more
level of redundancy between consecutive frames we can expect more conciseness
from the EVM. However, scientific sequences provide us with a huge set of examples
where the degree of redundancy is very low or inexistent. Consider for example the
sequence presented in Figure 11. Such sequence describes a coronagraph image of a
radiation storm which took place in January 20, 2005 [5]. The main characteristic in
this sequence shows that the value of a pixel (inside the main circle) in a frame is
distinct from the value of that same pixel in the next frame. Because of the accuracy
required when these sequences are analyzed, any kind of threshold, which could
elevate the redundancy degree, is prohibited. Hence, the cardinality of the EVM’s that
represent these sequences is expected to be high. The procedures we have described
consider the representation of a frame by considering the original two spatial
dimensions for each one of its pixels. A possible solution to the addressed problem
could consider the linearization of each frame. That is, a frame can be considered as a
matrix but by stacking its columns on top of one another we obtain a vector. In this
way we have that each pixel can be referenced by only one coordinate in the vector.
Hence, we deal with only one spatial dimension instead of the original two
dimensions. Obviously we have the way to recover the original position of a pixel

Representing and Visualizing Vectorized Videos thorugh the Extreme Vertices Model ... 79

given the original width and height of its frame. It can be observed that a 3D-OPP can
represent our animation: X1-axis will correspond to the position in the linearization,
X2-axis will refer to its red-green-blue integrated components, and X3-axis will be
associated to time. Algorithms 3.1 to 3.3 should be modified to consider an OPP that
represents a set of linearized frames. In the future we will discuss these described
ideas and the obtained results.

References

1. Aguilera, Antonio. & Ayala, Dolors. Orthogonal Polyhedra as Geometric Bounds

in Constructive Solid Geometry. Fourth ACM Siggraph Symposium on Solid
Modeling and Applications SM'97, pp. 56-67. Atlanta, USA, 1997.

2. Aguilera, Antonio. Orthogonal Polyhedra: Study and Application. PhD Thesis.
Universitat Politècnica de Catalunya, 1998.

3. Center for Computing Technologies, Digital Media/Image Processing, University
of Bremen. Web site: http://www.tzi.de/tzikeyer/index.html

4. Koloros, Martin & Zára, Jirí. Coding of vectorized cartoon video data.
Proceedings of Spring Conference on Computer Graphics 2006, pp. 177-183.
Comenius University, Bratislava, 2006.

5. Koppeschaar, Carl. Astronet’s Web Site:
http://www.xs4all.nl/~carlkop/auralert.html

6. Kwatra, Vivek & Rossignac, Jarek. Space-Time surface simplification and
Edgebreaker compression for 2D cel animations. International Journal of Shape
Modeling, vol. 8, No. 2, December 2002.

7. Moeritz, S. & Diepold, K. Understanding MPEG 4: Technology and Business
Insights. Focal Press, 2004.

8. Pérez-Aguila, Ricardo. The Extreme Vertices Model in the 4D space and its
Applications in the Visualization and Analysis of Multidimensional Data Under
the Context of a Geographical Information System. MSc Thesis. Universidad de
las Américas, Puebla. Puebla, México, May 2003.

9. Pérez-Aguila, Ricardo. Orthogonal Polytopes: Study and Application. PhD
Thesis. Universidad de las Américas - Puebla. Cholula, Puebla, México,
November 13, 2006.

10. Pérez-Aguila, Ricardo. Modeling and manipulating 3D Datasets through the
Extreme Vertices Model in the n-Dimensional Space (nD-EVM). Accepted and
to appear in the First International Conference on Industrial Informatics,
CICINDIN 2007. To be held in México City, México, November 5 to 9, 2007.

11. Spivak, M. Calculus on Manifolds: A Modern Approach to Classical Theorems
of Advanced Calculus. HarperCollins Publishers, 1965.

80 Ricardo Pérez-Aguila

